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Abstract

This work deals with the study of the steady-state analysis of conjugated heat transfer process for the thermal
entrance region of a developed laminar-forced convection flow of a power-law fluid in a circular tube. A known uniform
heat flux is applied at the external surface of the tube. The energy equation in the fluid is solved analytically using the
integral boundary layer approximation by neglecting the heat generation by viscous dissipation and the axial heat
conduction in the fluid. This solution is coupled to the Laplace equation for the solid, where the axial heat conduction
effects are taken into account. The governing equations are reduced to an integro-differential equation which is solved
by analytical and numerical methods. The results are shown for different parameters such as conduction parameter, o,
the aspect ratio of the tube, ¢ and the index of power-law fluid, n. © 2001 Published by Elsevier Science Ltd.

1. Introduction

In a broad variety of chemical and industrial pro-
cesses, non-Newtonian fluids have to be heated or
cooled and interesting examples related with the heat
transfer characteristics of non-Newtonian fluid flows in
pipes appear in double pipe and shell and tube heat
exchangers. For instance, in the polymer and food in-
dustries it is possible in these geometries to generate
well-defined heat transfer rates, which have a strong
influence to control extrusion processes. Sometimes, it
may also be necessary to reduce the rate at which heat is
lost from a pipe system or using another physical con-
figuration, such as screw conveyors. Other typical ex-
ample where the influence of the heat transfer rates in
circular tubes plays an important role occurs in the
obstruction of pipelines due to paraffin or wax depo-
sition during the flow of crude oil, recently analyzed by
Elphingstone et al. [1] and Ribeiro et al. [2], among
others. Many of these applications, including funda-
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mental aspects, are well discussed and documented in a
book of Chhabra and Richardson [3], also in detailed
surveys by Cho and Hartnett [4], Hartnett and Cho [5],
Lawal and Mujumdar [6] and in the Skelland’s classical
book [7]. Recently, Chhabra [8] presents an excellent
review up to date of heat and mass transfer in non-
Newtonian flows. However, in all these examples the
heat transfer to/from non-Newtonian fluids in circular
pipes can be influenced, among others physical aspects,
by the finite thermal conductivity of the container.
Therefore, the conventional assumptions of no interac-
tion of conduction—convection coupled effects is not
realistic and has to be considered in evaluating the
conjugate heat transfer processes in the above-men-
tioned devices. In general, these heat transfer mech-
anisms have been artificially decoupled in many
published works, as the laminar-forced convection heat
transfer from circular pipes with prescribed surface
temperature or heat flux.

In the past, the solutions of this kind of problems
with prescribed boundary conditions, have been classi-
fied in fully developed laminar heat transfer and the
laminar heat transfer in the thermal entrance region,
both with a fully developed velocity profile using the
power-law fluid model. This power-law model is
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Nomenclature

¢ specific heat of the power-law fluid

dP/dz axial pressure gradient in the fluid

Gz Graetz number defined by Gz = nRPe/L

h thickness of the tube wall

k consistency factor introduced in Eq. (1)

L length of the tube introduced in Eq. (2)

n power-law index of the non-Newtonian fluid
introduced in Eq. (1)

Nu Nusselt number defined in Eq. (21)

Pe Peclet number defined by Pe = pcuiR/A

qe uniform heat flux applied at the external
surface of the tube

R internal radius of the tube

T temperature

Ty entrance temperature of the power-law fluid

T bulk temperature of the power-law fluid

u average velocity of the power-law fluid
velocity

7z cylindrical coordinates

Greek symbols
o heat conduction or conjugated parameter,
defined in Eq. (6)

1) thickness of the thermal layer in the
power-law fluid, defined in Eq. (2)

€ aspect ratio of the wall, defined in
Eq. (6)

£ aspect ratio of the wall, defined in
Eq. (6)

/ thermal conductivity of the power-law fluid

- thermal conductivity of the tube

o density of the power-law fluid

a non-dimensional coordinate, defined in Eq.
12)

0 non-dimensional temperature of the
power-law fluid, defined in Eq. (13)

0, non-dimensional temperature of the wall,
defined in Eq. (13)

1 non-dimensional coordinate, defined in
Eq. (12)

{ non-dimensional coordinate, defined in
Eq. (12)

Subscripts

e refers to external conditions

f refers to the fluid

1 conditions at the upward end of the wall

w conditions at the tube wall

adequate to account the shear dependence of viscosity in
most engineering design calculations. Other models us-
ing Bingham fluids or more sophisticated rheological
cases can also be considered. Here, we analyze only the
case of the thermal entrance region with fully developed
flow in a tube. Since the experimental work of Pigford
[9] to study the thermal entrance flow region with the
boundary condition of constant wall temperature, ex-
tensive studies of those pre-determined boundary con-
ditions for the involved surfaces have been developed in
order to have a better knowledge of these processes.

The first analytical study extending the Newtonian
solution to purely viscous power-law fluids was obtained
by Bird [10], using a series form solution of the gov-
erning equations of the laminar heat transfer in the
thermal entrance region for the constant heat flux con-
dition. Bird et al. [11] applied the so-called Leveque-
approximation [12] to calculate the laminar heat transfer
for the case of constant wall heat flux as well as for
constant wall temperature in power-law fluids. The key
assumption in this approach is that the thermal
boundary layer is confined to a thin layer adjacent to the
tube wall. This is a suitable assumption for high flow
rates and short tubes, that is for large values of the
Graetz number, Gz, to be defined later.

These above laminar heat transfer results in the
thermally developing region was reviewed by Bird [13].
Metzner et al. [14] presented the first theoretical analysis

combined with an experimental study of the variables
controlling heat transfer rates to non-Newtonian fluids.
Following the work of Metzner et al. [14], Mahalingam
et al. [15] improved the theory using analytical and ex-
perimental studies, by comparing with previous re-
lationships and correlations. The chosen wall boundary
conditions involved uniformly constant heat flux and
step change in surface heat flux. Changing the boundary
condition for constant wall temperature, Richardson
[16] solved the problem of heat transfer of a power-law
fluid in laminar flow, including the effect of heat gener-
ation by viscous dissipation. A similar analysis with the
same effect for high Prandtl number of the fluid was
performed by Basu and Roy [17]. Extended solutions
were investigated by Liou and Wang [18], Lawal and
Mujumdar [19] and Barletta [20]. On the other hand, the
effect of axial heat conduction in the fluid was consid-
ered by Johnston [21] and Bilir [22], who showed that
this effect is important only very close to the inlet sec-
tion. Recently, a new analytical solution for the heat
transfer in the entrance region for ducts was reported by
Khellaf and Lauriat [23], using separation of variables
and spectral decomposition of the eigenfunctions in
polynomial form.

The study of conjugate heat transfer between forced
or natural convection flows and heat conduction in walls
is important because of the existence of coupled effects
in practical heat transfer processes. In particular, the
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design and performance of counterflow multilayered
tube heat exchangers offer an excellent opportunity to
analyze these phenomena. Using Newtonian flows, the
specialized literature have showed many theoretical and
experimental analyses to validate the conjugate heat
transfer modelling. In this direction and considering
simple heat exchanger geometries, Méndez and Trevino
[24], Bautista et al. [25] and Trevino et al. [26] have
conducted analytical models to elucidate the importance
of coupled heat transfer effects. In order to obtain new
solutions where non-isothermal conditions at the wall of
the tube are present, in this paper we analyze the non-
Newtonian conjugate heat transfer between a power-law
fluid flowing in a circular tube and the internal wall of
the tube. For simplicity, we consider the case for which
the external wall of the tube is maintained at an uniform
heat flux. We consider here the thermal entrance region
with a fully developed laminar velocity profile, neglect-
ing the heat generation by viscous dissipation and the
axial heat conduction in the fluid. The axial heat con-
duction in the tube wall has been considered. We an-
ticipate that the heat flux from the power-law fluid to the
wall is strongly influenced by the presence of the wall
with finite thermal conductivity, because longitudinal
and transverse heat conduction effects become signifi-
cant. We use perturbation and numerical techniques
together with the classical boundary layer theory for the
heat transfer analysis of a power-law fluid in a circular
tube, to show that the heat transfer is controlled by four
non-dimensional parameters: o, n,¢ and &. The conju-
gated parameter o measures the importance of the
longitudinal heat conduction through the tube wall, 7 is
the power-law index and ¢ and &, are aspect ratios very
small compared with unity, to be defined later.

2. Formulation and order of magnitude estimates

The physical model under study is shown in Fig. 1.
We consider a laminar flow of a power-law fluid along a
circular tube with internal radius R and thickness /. The
fluid enters to the non-isothermal finite section of length
L of the tube with a well-known fully developed velocity
profile and stress—strain relationship given by [20]:

3n+1 7\ (n+1)/n du
- u 1_ <_ rz — 5
T u{ R) ]’ ==k dr

n—1
du
& O

with

1/n
g | L(_dP n__\gin+i)/n
2k dz 3n+1

representing the mean value of the velocity, n is the
power-law index (n =1 corresponds to a Newtonian
fluid), k is the consistency factor, frequently used in
these applications. The origin of the cylindrical coordi-
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Fig. 1. Schematic diagram of the studied physical model.

nates system is placed at the z symmetry axis of the tube
and r axis points out in the radial direction, which is
normal to the surface of the tube. We assume that prior
to the entry plane (z < 0), the fluid temperature is uni-
form, Ty = T,,. For z > 0, the temperature of the fluid
varies in both radial and axial directions as a result of
the heat loss ¢, from the external wall of the tube, thus
building a thin thermal boundary layer at the internal
surface of the tube. For simplicity, the fluid properties
are assumed to be constant. Both ends of the tube are
connected with adiabatic walls, which are the continu-
ation of the non-isothermal wall as shown in Fig. 1.

In order to obtain the relevant non-dimensional pa-
rameters and the working regimes, we introduce an or-
der of magnitude analysis [27]. Using the linearized
version of Eq. (1), the characteristic fluid velocity within
the thermal boundary layer is given as u, ~
(3n+ 1)ud/(nR), where 9 is the thickness of the thermal
boundary layer. Performing an energy balance between
the convection and diffusion terms, we obtain that the
thermal boundary layer of the fluid is related to
the length of the tube as

n R\’ 1
3n+1\L) Pe

where Pe is the well-known Peclet number defined as
Pe = pcuR/A. p,c and A represent the density, the
specific heat capacity and the thermal conductivity of
the fluid, respectively. Due to the adiabatic boundary
conditions at both ends of the wall, the overall heat
transfer from fluid to the tube wall have to be of the
same order of magnitude
AT; AT,

Ai'\“)“wi'\’ e 3
= ek’ ©)

1/3

0 , 2)
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where AT; and AT, are the characteristic temperatures
changes in the transverse direction for the fluid and the
wall, respectively. In relationships (3) we assumed that
the thermal boundary layer thickness as well as the
thickness of the tube are very small compared with the
radius of the tube. On the other hand, the total tem-
perature change in the system is then of order
AT ~ AT; + AT,,. Combining the relationships (3) with
the above total temperature change, AT, we can easily
show that

AT, o n 173

PV AN | ,

AT 2\ 3n+1

LU YR S A Y (R
AT 2\ 3n+1 2\ 3n+1

and the global temperature change must be then of the
order

ATNq.EhM{IJr%( " )/} (5)

T (1+20/2) 3+ 1

where o is the longitudinal heat conduction parameter, ¢
and g, are the aspect ratios of the wall of the tube, de-

fined as
OEN

where o« measures the effect of the longitudinal heat
conduction along the tube wall. For values of & > 1, the
longitudinal heat conduction is very strong, thus not
permitting the existence of large temperature gradients
at the wall. Otherwise, for values of o <« 1, the longi-
tudinal heat conduction is very weak and thus the cor-
responding term can be neglected in the energy equation
for the tube wall. Because 7 is in general a non-dimen-
sional parameter of order unity, we choose as global
characteristic temperature change, AT, the larger value
of the relationship (5), which corresponds for those
values of a/e? > 1, that is

o (L+e) geh

A= E T/ A 7

With this definition of the characteristic temperature
change, we can normalize the governing equations in-
troduced in the following section. Finally, the order of
magnitude of the non-dimensional heat flux or overall
Nusselt number using the suitable global Graetz num-
ber, Gz = nRPe/L, is given by the following relationship:

AT; R 3n+1\ Gz]1"°

This derived asymptotic formula for the Nusselt num-
ber is the well-known given elsewhere, [4,5]. Some
physical consequences of relationships (6) and (8) are
the following. If we increase the fluid velocity for fixed
geometrical values, the Graetz and Nusselt numbers
also increase and the value of o decreases, indicating
that the longitudinal heat transfer produces contrary
effects on the Nusselt number. We can also obtain in-
teresting asymptotic relevant limits, which dictate the
different physical regimes of the conjugated heat trans-
fer process. Basically, we select two different cases:
a/e? > 1, 0/e’ ~ 1, with the index n of order unity. For
values of a/¢? >> 1, from the relationships (5) and (8) we
obtain

AT, & [(3n+1 173 AT;
E”;( p ) <l Sp~l ©)

Thus, the transverse temperature variations in the wall
of the tube compared with the overall temperature drop
AT are very small, of order ¢? /o at most. This represents
the so-called thermally thin wall limit [24], where the
temperature in the tube wall can be assumed to be only a
function of the longitudinal coordinate, 7,(z). For
values of a/e? ~ 1, we obtain from the same order
relationships

AT, n 173
2 v/ ~ 1
AT /{ +(3n+1) ’
AT; 3n+1\"?
25 1/ ~ 1.
AT /|: +( n )

In the latter case, the transverse temperature drop in the
tube is of the order of magnitude than the overall
temperature drop for finite values of n. This corresponds
to the thermally thick wall limit. The numerical and
analytical solutions presented in the following sections
validate these asymptotic relationships. In these
sections, we solve fully the thermally thin wall regime,
using asymptotic and numerical methods. Applying a
regular perturbation scheme, the thermally thick wall
regime is analyzed only for the case of «/¢’ < 1, ie.,
when the local influence of inner zones of longitudinal
heat conduction close to both ends of the tube wall, is
neglected.

2.1. Governing equations

The non-dimensional governing equations for the
wall of the tube and for the non-Newtonian fluid flow,
together with the corresponding boundary conditions,
are given below. Guided by the order of magnitude es-
timates, we introduce the following non-dimensional
variables:
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L_Zz O__r—R
){7 I - h b
1/3 (11)
—(p_ n_r 1/3
(=R r)/[RLm—}—le} z }
T.—T T — Ty

The resulting non-dimensional energy governing equa-
tions for the fluid and the wall are, respectively

2’0 1,00 a0

a?JﬁC a*c*’(éa’ (13)
%0, 1 0 00,

Oﬁ—axz +6_27(1+&00)$|:(1+800_)$:| 70 (14)

The energy equation for the fluid was derived using the
boundary layer approximation for large values of the
Graetz number, Gz > 1, which corresponds to neglect
the longitudinal heat conduction along the fluid. This
analysis is also called Leveque’s approximation in the
specialized literature and the thermal boundary layer is
confined to a thin layer of the fluid adjacent to tube wall,
where the velocity profile can be linearized close to the
wall [12,28]. The adiabatic boundary conditions for the
wall of the tube are given by 00,,/9y|,_,, = 0, whereas
the boundary conditions associated with the fluid are

0(0,) =0, 0(x,00) =0, (15)
together with

00y _81(1-0—80/2) (16)
oo |,_, T o (1+e)

Furthermore, we also need the compatibility conditions
at the internal surface of the wall given by the continuity
of temperature and heat flux, which can be written as

0(x,0) = 04(%,0),

& (1—0—80/2)(3714-1)1/369

T a y1/3 4n a_g

o,
O

(17)

=0

=0

The energy equation for the fluid (13) can be easily in-
tegrated by using the Lighthill’s integral technique [28].
For this specific case, the non-dimensional heat flux at
the inner surface of the wall can be written as

’ dol,(x,0)
O +/ Kz, x)—55—=dy |,
A (1) dr

(18)

where the kernel K is a function given by
K(g,7)=010- 7 /%)~ and 0, is the value of the non-
dimensional temperature at y = ¢ = 0. The solution of
the problem (13)—(17) should provide

o0

R = —0.8546

(=0

0w =F(y,0:0,n,60¢8) for Gz>> 1. (19)

The local reduced non-dimensional heat flux or local
Nusselt number at the external surface of the wall, is
defined as

2¢.R 2 Gz\'"?
- = — . 2
N = T TG R 1) ewu,l)(n) (20)

Therefore, an averaged Nusselt number can also be
obtained as

Gz\'"? ! dy
Nu=2(-"2 o 21
! (n> /oew(x,l) @)

where T, is the bulk temperature of the stream flow and
is close to T, as a first approximation, due to the
presence of the thin thermal boundary layer flow. The
higher corrections to T, — T, are of order of T,,Gz™!, for
Gz > 1, which are not considered in this work.

3. Thermally thin wall limit (a/&* > 1)

For values of « very large compared with &2, the non-
dimensional temperature of the wall depends only on the
% coordinate in a first approximation, as predicted in
relationship (9). Therefore, Eq. (14) can be integrated
along the transverse coordinate and after applying the
boundary and compatibility conditions (16) and (17),
together with Eq. (18), we obtain

d*o Cy (3n+1\" O
W 1 {_)W K / (_)/
g $/3 ( 4n ) [ Y o (1) W}’

(22)

where the constant Cy = 12'3/I'(1/3) = 0.8546 and
I'(a) represents the complete I'-function. The first and
second terms at the left-hand side of Eq. (22), denote the
longitudinal heat conduction along the wall and the
non-dimensional heat removed from the external sur-
face of the tube. Parameter o measures then the influ-
ence of the longitudinal heat conduction. The term on
the right-hand side is the heat transferred from the fluid.
This equation has to be solved together with the adia-
batic boundary conditions. Eq. (22) defines one integro-
differential equation for the unknown 60, with two
non-dimensional parameters, « and z. In this regime, the
aspect ratios ¢ and & play no role in the heat transfer
process, thus the functional relationship (19) reduces to
0w = F(x : a,n). For very large values of o, a uniform
temperature distribution in the tube wall is obtained,
depending only on the index 7. In the following sections,
we analyze the limits characterized by large and small
values of o, with values of n of order unity and
o/e? > 1. Employing numerical techniques reported
elsewhere [29], we solve Eq. (22) and compare with
analytical solutions of this equation using asymptotic
techniques.



660 N. Luna et al. | International Journal of Heat and Mass Transfer 45 (2002) 655-666

3.1. Solution for o.>> 1

For large values of « compared with unity, the non-
dimensional temperature of the plate is practically uni-
form giving only small changes (of the order o~!) in the
longitudinal direction, as was anticipated from the order
of magnitude analysis. Therefore, 0,, can be obtained by
using the following regular expansion series

Ow(y : n) = 0p(n —|—Zoc’9 z:n) (23)

Introducing these relationships into Eq. (22), we obtain
the following set of equations, after collecting terms with
the same power of o

d*6,
iz =0 (24)
d*0,
a2 +1
1/3
o (N o [N kGan). @9)
4’1 0y
&0,.,
dy?
3+ 1\
—ao(N o, v [ ks )do,
4n 01,
for j >0 (26)
with the adiabatic boundary conditions
do; =0 for all ;. (27)
dy 7=0,1

Integrating Eq. (24) with the adiabatic boundary con-
ditions (27), gives 0y = 0y(n), where the value is to be
obtained with the aid of the first-order solution. Inte-
grating Eq. (25) and applying the adiabatic boundaries
at both ends of the tube, we obtain the leading order of
the non-dimensional tube wall temperature as a function
of the power index » in the form

" 13
0=/ s () (28)

Introducing the solution for 6, into Eq. (25), and inte-
grating this equation twice, we obtain

1 3
01(x) = — 2}’ +z ,{5/3+C17 (29)

where C) is an integration constant related to the tem-
perature of the tube at y = 0 and must be determined by
solving the second-order equation. Following the same
procedure, the value of C; is obtained as

1

C =-B(2,2/3) —

2 ZB(5/3,2/3) = — 0.0683. (30)

Here, B(a,b) represents the complete f-function. The
solution for the first-order correction does not depend
on the index n. In the same form, 0,(y : n) is given by

3+ 1\’ 9 e

9 13 9 P
57" B(5/3,2/3) + 15 1 Ci 4+ Ca),
(31)
where
C, = %3(2,2/3)3(11/3,2/3)
—53(5/3,2/3)3(10/3,2/3)
- ;C13(5/3,2/3) = 0.01455. (32)

Therefore, up to terms of order o2, the non-dimen-
sional wall temperature is written as

NE
0 = /343 (5 )

1/ 1, 3 s Co (3n+1\"?
+oc< 2* +57 +G +a2 4n

9 1y
< | - g B2/

o7 "B(5/3,2/3)

9
+

10/5/‘(?1 +CZ} +0(a73), (33)

whereas the non-dimensional local and averaged heat
fluxes up to terms of order o', take the form

Nu, _ 1496 (3n+ 1\ . 13
Gz\3 413 4n T \3n+1
1
+- [— 0.4y + 0.36;(5/3}} +0(a?) (34)
Nu  (3n+1 13
Gz\3 4n

0.0064 (3n +1 ) 173
_l’_
4n

1.7503.

+O(x2). (35)

o

The leading term on the right-hand side of the above
equations represents the classical Metzner solution for an
isothermal tube surface [14]. Eq. (35) shows that the glo-
bal Nusselt number increases for decreasing values of o.

3.2. Solution for o. — 0

For small values of « compared with unity, the lon-
gitudinal heat conduction term in Eq. (22) can be ne-
glected in a first approximation. For values of o — 0,
but large compared with ¢?, the thermally thin wall
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approximation is still valid. This case represents a sin-
gular limit due to the existence of two longitudinal heat
conducting layers at both ends in order to satisfy the
adiabatic boundary conditions. The mathematical
model of these thermal boundary layers is not presented
here, because they only have a local thermal influence
close to the ends. Outside of these regions, longitudinal
heat conduction along the wall is always negligible, re-
ducing Eq. (22) to an integral equation

Co [3n+1\"V3[ [0 ,
S [ xGnan 1. (36)

The subscript e is used to denote the outer solution,
where the longitudinal heat conduction has been re-
moved. We also have to remove the boundary con-
ditions dfy./dy =0 at both edges. The above integral
equation can be solved by applying the Abel’s inversion
theorem [30], giving

3\/§ 4n 173 !
. v (= L1/3
Oue iz : 1) 2nC (371 +1 ) “ (37)

The local and averaged Nusselt numbers for this regime
are then given by:

Nu, 1411 (304 1\ 1
GZ\3 413 4n (38)
Nu 3n+1\"°

15 = 2.1165( > : (39)

Comparing both averaged Nusselt numbers for large
and small values of o, we conclude that the effect of
longitudinal heat conduction along the tube walls is to
reduce in 17.062% the heat transfer rate.

4. Thermally thick wall limit (x/2? < 1)

In this regime, the transverse temperature variations
in the wall are of order of the global temperature
change, AT, and the wall temperature is now a function
of the longitudinal and transverse coordinates y and o,
respectively. However, for small values of ¢, the longi-
tudinal heat conduction along the tube wall is also very
small and can be neglected in the whole length of the
wall. The problem is then reduced to analyze the outer
non-longitudinal heat conduction region. A first inte-
gration of Eq. (22) gives

00y (1, 9)
0o

o0,
= (+a)5-

00y

(1 +’806) = ?i;

(40)

g=1 =0

Replacing the boundary conditions (16) and (17), to-
gether with (18), we obtain an unique integral equation
for 0,(x,0) as

Co (3n+1\"7[ ™ ,
I Kz, 7)d0, (,0)| = 1. 41
11/3( 4n ) { A (1, )0, (', 0) (41)

This equation is exactly the same as for the thermally
thin regime with o = 0, given by Eq. (37). Integrating
the first equality in Eq. (40) and taken into account the
known function 6,,(y, 0), we get the final solution for the
thermally thick regime as

3V3/ 4n \'°P
Ow(z,0:n) = ( > 7

T2y \3n+1
2
+% (Hgﬁ In(1 + £0) (42)
0

with the corresponding local Nusselt number given by

Nu, 1 3V3 4n 1/‘11/3 +i
Gz\/3 x

2nCy \ 3n+1 o
where we have omitted the curvature effect represented
by &. The resulting averaged Nusselt number is then
given by

2 4 2
Nu ﬁ(é—ﬁbﬁ%bz In (“b“/g )) (44)

; (43)

G5B AhA\2 7 g
where

21Cy (3n+1\"? 3n+1\"?
b:3”f3(’< ”4: ) :1.0334( ”4: ) . (45)

For large values of &’/o compared with unity, the
asymptotic behavior is given by

Nu o 4n 3 g2
—~ 1. ——0.991 —
Gz!/3 365682 0.99 09(3n+1) <£2)

+o(§f. (46)

The first term corresponds to the case of pure transverse
heat conduction. On the other hand for small values of
¢? /o compared with unity, the asymptotic behavior is
given by

Nu 3n+1 173 3n+1 A3 g2
——~ 211 —4.374 —
Gz!'53 67( 4n ) 37 8( 4n ) o

+o(§>2 (@)

o

for values of o/’ > 1. The first term here corresponds
to the limit of thermally thin wall regime with o = 0.

5. Results and conclusions
The heat transfer process is governed by three

non-dimensional parameters: o,¢ and n, for values of
the Graetz number very large compared with unity.
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Parameter o measures the effect of the longitudinal heat
conduction along the tube wall as represented by Eq.
(22). Therefore, the longitudinal heat conduction is im-
portant for not very small values of « compared with
unity. The other relevant parameter is given by o/,
which determines the thermal regime in the tube wall.
The inverse of this parameter is often called the Brun
number or the conjugate parameter. For large values of
o/e* compared with unity, the temperature variations in
the transverse direction in the tube wall are negligible
compared with the global temperature change dictated
by the external heat flux. This is what we call the ther-
mally thin wall regime. In this regime, the temperature
gradients in the wall are of order AT./aL, for not very
small values of « and of order AT, /L for small values of
o. The largest temperature gradients arise in the ther-
mally thick wall regime with gradients of the order
AT./h. In the limit of very large values of o — oo, the
wall temperature is practically uniform and given in a
first approximation by the leading term (28). From this
relationship, 6y, is an increasing function of the power
index n, reaching the asymptotic limit of 0, ~ 0.8586 for
n> 1. For n < 1, i.e. for a shear thinning or pseudo-
plastic fluid, the wall temperature in physical units is
larger than the case of n > 1 (shear-thickening or dila-
tant fluid), indicating a large heating of the wall material
for the pseudoplastic case. On the other hand, for values
of o« — 0, Eq. (22) is singular. This means that it is
necessary to include the inner heat conducting layers at
both ends of the wall tube. However, these thermal
conduction boundary layers have only a local influence
and we do not present the solution in these layers.
Outside these inner regions, there is an outer zone where
the non-dimensional temperature of the wall tube is
shown in Fig. 2 as a function of the longitudinal coor-
dinate y for o = 0 and different values of the parameter
n. Here, we have used the analytical solution given by
Eq. (37). In Fig. 3, we show the numerical and asymp-
totic solutions of the governing equation (22) for the
non-dimensional temperature as a function of the lon-
gitudinal coordinate y for o = 1 and different values of
the power index n. We also obtain here a similar be-
havior for the non-dimensional temperature. However,
the asymptotic solution for large values of «, gives ex-
cellent results confirming that even for values of o ~ 1,
this solution offers an excellent agreement with the nu-
merical solution. In Fig. 4, the same parametric depen-
dence of the non-dimensional wall temperature is shown
for a value of o =10. Obviously, in this case the
agreement between both solutions has been improved.
For larger values of the parameter «, the non-dimen-
sional temperature tends to reach a uniform value, de-
pending only on the assumed values of the parameter 7.

Figs. 5 and 6 show the ratio of Nu,/Gz'/3, given by
Eq. (38), as a function of the coordinate y for different
values of the parameter n with « =0 and « = 10, re-
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0.8

a=0

0-0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

X

Fig. 2. Non-dimensional wall temperature profile given by Eq.
(37) as a function of y, for o = 0 and different values of n.

A Asymptotic solution
-~ Numerical solution

0.5 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0
4
Fig. 3. Numerical and asymptotic non-dimensional wall tem-

perature profiles as a function of the non-dimensional longi-
tudinal coordinate y, for o = 1 and different values of n.
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Fig. 4. Numerical and asymptotic non-dimensional wall tem-
perature profiles as a function of the non-dimensional longi-
tudinal coordinate y, for o = 10 and different values of n.

spectively. For this set of values of the involved non-
dimensional parameters o and n, the ratio Nu,/Gz'/3
shows a very sensible dependence for very small values
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Fig. 5. Local reduced Nusselt number given by Eq. (38) as a
function of the non-dimensional longitudinal coordinate y, for
o = 0 and different values of n.
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Dotted line: Numerical solution
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Fig. 6. Numerical and asymptotic local reduced Nusselt num-
ber as a function of the non-dimensional longitudinal coordi-
nate y, for o = 10 and different values of n.

of n. In both figures, the numerical and asymptotic so-
lutions compare very well. Fig. 7 shows the global or
average ratio Nu/Gz' as a function of « for the ther-
mally thin wall regime, for different values of n. Here, we
present the numerical and the asymptotic solutions up to
terms of order o' and o~2. In this figure, there are
critical values of o ~ 1 where the perturbation solutions
obtained for large values of « are no longer valid.
However, we separate both asymptotic solutions to
show that the first-order effects give a better agreement
with the numerical solution. We also report in the same
figure that obtained asymptotic values for Nu/Gz'/> with
o =0, using the formula (38). Clearly, the numerical
solution tends to validate the asymptotic relationships.

Nu/Gz13
3.0 T
Wy
W
\\Q\\ | \\ R Numerical solution
Wy
as0 W'Y - Asymptotic solution (c:2)
25| BN 4

I Asymptotic solution (or1)

o

2.0

0.01 0.1 1 10 100

Fig. 7. Numerical and asymptotic values of the global reduced
Nusselt number as a function of « and different values of » for
the thermall thin wall regime.

Finally in Fig. 8 we show the reduced global Nusselt
number Nu/Gz' for both the thermally thin and thick
wall regimes as a function of « and «/¢?, respectively. In
this case we show the plot for the specific case of n = 1.
All other values of n produce similar results. For values
of a very small compared with ¢ (thermally thick wall)
the global reduced Nusselt number is very low and ba-
sically the heat transfer process is due to heat conduc-
tion through the tube wall. As the value of o increases,
the reduced Nusselt number increases drastically to
reach a maximum for values of 1> o> ¢2. At this
point, the longitudinal heat conduction through the wall
is negligible because the value of o is still very small
compared with unity. As the value of « increases further,
the longitudinal heat conduction along the tube wall is

1/3
Nu/Gz
Al T T T T T T y
Thermally Thick Wall Regime
n=1
2.0 4 4 \ i
1.5 4 4 .
Thermally Thin Wall Regime
1.0 1 4 -
0.5 4 4 .
0-0 Al T T T T T 0 T T 2
107 10" 10° 10' 10* 10° 10® 10" 10 10' 10
2
o/e o

Fig. 8. Global reduced Nusselt number as a function of « and ¢
for the specific case of n = 1. The thermally thin and thick wall
regimes are clearly shown.
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now important and its effect is to reduce the global re-
duced Nusselt number reaching a finite value as the
value of o — oo.

By way of illustration we show in Table 1 the influ-
ence of the longitudinal heat conduction in the overall
process represented by the ratio of Nu/Gz'/?. In the
upper part of this table, we use the reported data by Cho
and Hartnett [4] for extremely long tubes. We computed
the respective values of o and o/’ assuming a relative
thickness of the tube //L =10"* and two different
metallic tubes (aluminium and copper). In all experi-
mental cases, the values of o are very low compared with
unity but with values of o/¢? very large compared with
unity. Therefore the solution for Nu/Gz'/? given by Eq.
(39), corresponding to the thermally thin wall regime
with o — 0 [10], gives an excellent approximation. In the
lower part of the table we use the same properties for
fluids and tubes, but the extreme case of very short tubes
(R/L = 1). In this case, the computed values of « are of
order unity, thus reducing the value of the overall
parameter Nu/Gz'”* in almost 17%, indicating that the
Bird’s solution, given by Eq. (39), is no longer valid, but
instead Eq. (35) gives a better prediction.

The conjugated heat transfer process of a power-law
fluid with a fully developed velocity profile in contact
with the internal surface of a heat conducting circular
tube has been analyzed for large values of the suitable
Graetz number, using asymptotic as well as numerical
techniques. Due to the finite thermal conductivity of the
wall material and the imposed heat transfer on the ex-
ternal surface of the tube, the heat transfer by conduc-
tion along the wall is a relevant mechanism that can
substantially modify the previous estimations of the lo-
cal and global Nusselt numbers based in prescribed
boundary conditions. The above is particularly valid for
finite values of the parameter «/¢’. In this sense, the
local heat forced laminar convection through the inner
surface of the circular tube, controlled by the axial heat
conduction in the tube wall, governs the spatial evolu-
tion of the wall temperature. However, these particular
temperature profiles are limited by the assumed values of
the power index n of the non-Newtonian fluid.
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